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FOREWORD

This report was originally issued under the designation
of OAR Technical Report #5, and contains the results of research
on the problem of the calculation of oscillatory 1lift and moment
coefficients which act on a two-dimensional airfoil moving at
subsonic speeds. The work was begun and partly completed while
the author was associated with the Dynamics Branch of the Air-
craft Laboratory, Wright Air Development Center, under E. 0. 459-41.
The author, who was also the project engineer, completed the re-
search while a member of the Applied Mathematics Research Section
of the Flight Research Laboratory, Wright Air Development Center,
The new edition is being issued for the purpose of correcting
numerous errors in the original, as well as meeting the demand
for additional copiles,

The author wishes to acknowledge the assistance of Mr. Hewltt
S. Toney, then of the Dynamics Branch, Aircraft Laboratory, and
presently of the Computation Research Section, of the Flight Re~
search Laboratory, in developing many of the formulase and in
carrying out the numericsl calculations.
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ABSTRACT

The present report explains and illustrates a method
of computing the non-stationary forces and moments on an 08~
cillating airfoil at subsonic speeds, The process is based
on the well known Possio integral equation relating the pres-
sure on the airfoil to the normal velocity,

Part I of the report contains the theoretical develop-
ment which leads to the required equations for determining the
lift and moment,

In Part II the method of Part I is applied to the com-
putation of the aerodynamic 1lift and moment coefficients for
four principal degrees of freedom of the airfoil, these being:

a, Translation of the complete chord of the airfoil
in a direction normal to the forward velocity (positive down),

b, Rotation of the entire chord about the forward
quarter-chord point (positive for increasing angle of attack),

c. Translation of the portion of the airfoil extending
from an arbitrary point to the trailing edge, in a direction
normal to the forward velocity, ‘

d, Rotation about an arbitrary point of that portion.
of the airfoil extending from that point to the trailing edge,

The appendices contain the detailed mathematical deri-
vation of the various formulae involved in the problem,

PUBLICATION REVIEW

Manuscript Copy of this report has been reviewed and found
satisfactory for publication,

FOR THE COMMANDING GENERALe

Colonel, USAF
Chief, Flight Research Laboratory
Research Division
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IRTRODUCTION

The question of the effect of compressibility on flutter calou-
lations has been the subject of numerous investigations. The first
approach to the problem was the use of the well known Prandtl-Glauert
correction factor by which the aerodynamic force is increased in the
ratio 1: /7~ 2 where 2\ is the Mach number, Since this correction
changes the magnitude of the aerodynamic forece but not the phase, it
is evident that such a correction, while satisfactory for the stationary
case, cannot be relied upon in the non-statiomary case where the phase
change 18 one of the most important factors.

In 1938 Possio (Ref. 11) wrote down the relation between the
pressure distribution over a chordwise element of the airfoil and the
total normal veloeity at any point (downwash), taking into account
the compressibility of the medium, in the form of an integral equation
of the first kind which now bears his name, The same equation was de-
rived independently by Klissner in 1940 (Ref. 4). Since no explicit
solution of the equation was evident (nor has since been found) re-
course to an approximate solution was made. Possio obtained a solution
by assuming that if the equation were satisfied at a finite number of
pointe on the chord, the results should approximate the exact values.
Using this method, Possio was able to calculate total 1ift and moment
coefficients for values of the reduced frequency less than ,6, and for
motions of the airfoll corresponding to rigid translstion and rotation
of the complete chord, Possio's results were later checked and extended
by Frager and Skan (Ref. 5). This method, now known as the collocation
method, results in a system of linear equations with as many unknowns
as points for which the equation is satisfied. Since the coefficients
in these equations are complex numbers, it is evident that such a solution
is long and tedious 1f a large range of parameters is to be considered.
Further, it is not possible to duplicate accurately by this method the
oconditions of a discontinuous downwash which ococurs when a control sur-
face is added to the airfoil,

A different aprroach to the problem was made by Schade (Ref, 12)
and Eichler (Ref. 13), in which expansions of both sides of the equations
were made in terms of known functions. Schade employed Legendre funetions
while Eichler used a trigonometric series. By limiting the expansions
to a finite rumber of terms and equating like coefficients, the problem

BADC: TR '52-56 £



was again reduced to the solution of a system of linear equatione,
Thus this method, while perhaps more accurate than the collocation
method, was still too laborious to be practical. (Schade indizated
that the case of a discontimuous downwash couvld be handled by the ine
troduction of the proper singularity in the pressure distribution.
He did not, howsver, present any numerical results for the none
stationary case),

In 1943 a new departure was made by Dietze (Ref. 3) who noted
that the difference between the kernel of the integral equation in
the compressible case and that of the incompressible case was small
compared to the actual value of the kernel, Thus, ueing the known ine
compressible solution as a starting point, Dietze was able to compute
by an iterative process the solution to the compressible problem, By
this method Dietze obtained a mumber of results for the case of con-
trol surface rotation, While the details of Dietze's calculations were
not available to the author; it appears that a large amount of labor would
be required to obtain a complete set of aerodynamic coefficients covering
the range of parameters required for conventional aireraft,

The present method resembles Dietze's in that the incompressible
solvtion is used as a starting point. It is, however, not an iterative
process but results in a closed solution based on replacing the non-
singular portion of the kernel by a polynomial. The question of the
rapldity of the convergence of the pressure distribution series is no
longer of any concern, and the only discrepancy between the solution
obtained and the exact solution lies in the difference existing be-
tween the asctual kerpel remainder and the approximation, The remaine
der is approximated over the required interval by minimizing the total
"mean square® error over the interval, The numerical resulte indicate
that this approximation is satisfactory even when an apparently large
discrepancy exists between the kernel difference and the polynomial ap~
proximation,

WADG TR 52-56 x5




PART I

STATEMENT (F THE PROBLEN AND METHOD OF SOLUTION

The problem of determining the lift and moment on an oscillating
airfoil in compressible subsonic flow was reduced by Possio to the ‘
solution of an integral equation of the first kind, which relates the
pressure differential over the airfoil chord to the downwash at any
point on the chord. The equation may be writtem in the foram

4 ' |
(1.02) W(x) = c./ f(3, wix-p)| () de

where A is the Mach mumber, k/(X) is the downwash at any point, expressed
as a funotion of the distance X (positive aft) of the point from the
mid-chord, s 1s the “reduced frequency® and Z"(t) is equal to %y
times the pressure distribution across the chord. '

The distances X and ¥ are non-dimensional with the semi-chord
taken as unity, The explicit form of the muoleus /A is given elsewhere
(see for example, App. 7). In the present trestment only the singular-
ities and the nmumerical wvalues of /C are required. As shown in other
investigations of thé subjest, /([A,b(l‘d]h" the following form near x=¥:

where [6 has no singularities. Yor ) = O,

(1,03) _
K/ g w(x- t)]: 7%‘“5(_145 + :—fﬂ—_-l.,/w(tz)/ + i [ o, wlxt)]'

Since the solution of equation (1,01) is known for the imcompressible
case where A = O, it is logical to attempt a solution for A =2 by
mking use of the results already obtained for the inscompressible ocase.
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To this end, the nucleus is written in the form

A
o Khﬂ&_xﬂ:ﬁ% Ko ) Vﬁﬁ”—“ﬁ w(;-z)]*'?[”"‘""“’]

Clearly, R is non-singular and may be approximated to a good degree
of acouracy by a polynomial. The advantege obtained by the present
treatment lies in the fact that all singularities in the pressure dis-
tribution are taken care of by means of the incompressible solution, and
that the resulting solution is obtained without the use of thy usual
series representation for ZZ (£). Thus the question of the rapidity of
convergence of such a series does not enter., Further, for low values of
& , a satisfactory approximation to K 1is obtained by retaining only
the constant and linear terms of the polynomial,

Placing for K the alternative expression as given by (1.0L)

{
- X[z (!
(1.05) W) ),-———/ [0 W B (x)de +:<7r,ﬁ-,\y/"5c—z)dt +eo K[a,a;(r;;y]uz)d,{

~l

~f

According to the work of Kussner (Ref. 1), the solution to the equation .

¢
(1.06) a://([o,w(x-r)]ﬂ‘lé’)dg =f(7<)

subjeot to the Kutta condition that Z(E)remain finite at =/ 1is given
by

(1.07) Z(x= [ ¢(%2) f(=)dz

~f

where G(x,z)z -.ﬁz. iwA(z,z)‘_/,l:: I+
i

2c(~)+ T }}

)

(1.08) Alx2)= -Llo:/ -xz +i~-xi-z2 . C(w) = Tyt o (w)
I SO TR s
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Since T(w) = 1 for @ = 0, this gives the additiomal remlt that if
!

(1.09) -7,—.’— _______-77;{5}):‘1{ = f&)
and II(1) is finite, then

{
(1.10) [ 1T X =2/ fl [z
7ox TH=7 x~zY’/-z dz
~

or, wvhat is equivalent

l !
7z _dz Zr (£) 2(7+x
i+tzZ - LD
(1.11) //,_z 7-—?‘_/2-5 des7 [;=— Z(x)
= -l

It can be seen that if equation (1.05) is rewritten in the form
[}

) [
2 f -
(1.12) F—%;/ Ko wtx-et)Iirydp=wx)- A [ Z (f&‘-%[,\,wcx~t)]z(r}at
f

-t -~y

1t can be formally regarded as a special case of equation (1.06) with ¥ (x)
replaced by the entire right side of (1.11). Thus applieation of equation
(1.07) gives the result

{
Z(x) _ A2 T =T R N
'/"’A& —Io (x)i‘”'a/“a‘t[[:wA(I’Z)i. Ft_; T:—z.{i-:?fct) zj_i_:_i__

{ i
-w/@(%l)&t/;?[h,“lz~t)]1'(€)dt

, (
where I, (x) -_[: G (-x: z2) W (z)dz is the 1nco-?rouiblo pressure dis-
tribution eorresponding to the given downwesh W (3). Making use of
equation (1.,11) and the following results established in Appendix I.

(1.13)

|

[ /
A [+Z Ze)dr / d
(1.144) T / -I—:—-Z-sz -—Z-:—E——- = / ICZ) [ 4

“l
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'
(1.14B) _y Alx,2)d }(t}dt -t : '
— ) 2 e =cosx [ (I} ~ F/Z’(f )ér
-t Nt x

gives

'
Z(x) -‘/Ié‘ ~ Holx), ¢( ~x
*5e/ ¢)de = __&[I_;;‘T V,%;-&-ﬁﬁedﬂ /z'mm

(1.15)
‘ )
| A / 6(% z)d% K [2,ot-0]z ()
A /
= A
with «& /"‘A"‘
The non-singvlar nucleus may evidently be approximated to .
the desired degree of accurscy by a pclynomial of degree n:
/?[A,w(z~t)]=- Ay + K 0(2-E)+ 8, 05 (2 ~§) 4 = omm cqyo (2-8) '
(1.16)
:40(2)‘“4(2)!*((1(Z)Z‘+----—-— - lUp ()T
where
)=+ Q0286 2% ~——— - +a, "2
(1.17) 4= )0 ~28 w2~ 3, 22—~ -- = 2!
l(z (z) = dzw’ -4-.'50(3 Wz - - + n(n-:) @ z'n-.x
& (2)= -ay0° - 4oy ozt -'n(n-l)'(’l-z)‘( N3
¥
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The last term in equetion (1,15) then becomes

' { |
(1.18) @, (x) / Z(k)de+ @ () [T (E)Edy + <~ --- + },M/I(t)e"dt

-t ~
| {
with fn(zjz/\G(z,z)((,,- (l)dz, MmO, =N

Equation (1.15) may now be written

Zr (x) rw/r(:)dt 5 Aaiﬁ", wgf%g) .ﬂl'(t‘)Jt
Vi- A% A4,
(1.19)
.Qf}‘. Ia)téc*»-‘“-‘*’}’.'%’ﬂ e
4’»

This equation may be solved as a differential equetion in 1-’ /.‘Z' t)dt
by introducing the integreting factor @~*4% , viz. x '

Wall

3 [I(t)dl {——'/I (L)C " dy
(1.20) Pt e‘
R frre s v M s A “ﬁa»:f/:’zwa
] -
W QW I(E)J&/'ﬂt)ld‘v ----- {___/ i}‘l‘ia,&/mbuy‘
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" Setting 2 = -1 in the above expression, s 78, obtain a linear equation
relating the (#4/) urknowns /pvpyde ﬁ'@)t do~~ ,/.'E'(ac?k

a.21) 4 ,/zmuuA /m:)zm e T = B

where

.Y ) ¥ |
/‘f.,, e - .77(7:1%3- I‘ﬂ: dz--,'F/é cuzdtr /c"a?,(zﬂg,

(
2,= [/ e (eydr

Expressions for these coefficients are obtainable in terms of Bessel
and other known functions (See Appendix I, II, III),

The 7 edditiomal equations required for the complete de-
termination of the unknowns are obtained by multiplying equation (1.19)

by z*fﬂ = 0,/ — ('h-!)] and integrating between the limits -1
and 1. 'Then since

1
/2 * [ e
(2 [ X[ T L2 [aenydy + ) £ ZLI
~ . -/

the following equations result

AKX tA XA Xn = B, (757
o\ Kot AuKit—-—AnZn = B f=

A X, A L= Asn X B/

WADO TR 52-56 6
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;
with x." 2" de; and

A,- m,--;};-ﬁir/ Ty, - i floit)ir 47._-,.[9,(:)1: \
Ay s /bma. A -7...=/ $xidr, n>s
Ago =~ 55 - M'l:‘! uz_#[[,,,d!‘" ____.[;.a)u;
Aunls lgmm Ap = £+ /famw

At .,__.,/'}, (elrdy, » >2

l .? _I._.:.'lg‘.'f/hzﬁt "—g[[cot'&]l‘Jl +3==/§.a)t

Ay ",7"—’/5“” d¥, Ay; « b Qall)r‘lz,A,,-.sé . /},(z)&dz
Asw = 7 / B (1) 22, ete.

2= [Z’(t)z dr, x>/ .

The ™) equations may be solved simultansously to determine the.quane\

tities
I. »X-o = --",Xn

The firat two of these give directly the lift and mid-chord momsnt

over the entire chord. In the case of & wing-aileron combination,the
1ift on the control surface extending from F= X To ¥ =/

is aleo required, which is found from equation (1.20) after substitution

of the known values for X,’ x' --X »
’

The partial mid-chord moment iz found in a similar manner by integrating
equation (1.19) from x to 1, with the aid of the relation

’ ‘ /
(1.25) /:lz Z(¢)dr = / (&-x)Ce)de
£ 4 X

VADC TR 52-56 7




Equation (1.25) may be applied to a wing-control surface combination by
regarding x as the coordinate of the control surface leading edge, since
the right side is precisely the moment about the leading edge.

The required relations are summarized by the following equations:

Total l:lft on control surface -

(1.26) eﬁ(z)dr AR ALK A, Ot -~ A (OE .

f’"

Total moment about the control surface leadirg edge =

w/[z—-x)rfz')alz L6~ [zevae.

(121) *

*/410 (I)Xo - All'(z)'xl* AR A/? (Z)Xn .

Where 4. (x) and B, (x) designate the respective quantities appearing in
equation” (1.20); 4; (x) and Bj(x) denote the corresponding quantities ob-
tained from equation (1.19) by integration from x to 1.

The expressions for the A;; . [i,i=0,/,2,3] and
AN i=0,15/= 0,1, 2 3J are lioted in Teble (1.01).
various 1ntegrala involved are evalued in Appendix I, II, while the mlua-
tion of the B; is carried out in Appendix III for the following four types
of motion:

a. Translation of the entire chord.

b. Rotation of the entire chord about the forward quarter chord
p°1nto

¢. Translation of the control surface.

d. Rotation of the control surface about its leading edge,

WEDC TR 52-56 8




For routine calculations the followirg procedure is suge
gested:

8, Calculation of all quantities which do not depend om
the polynomial approximation, These include the following:

Ao Apo () B, B, (x)
Ao Aot) 3, Z, ()

m
and the coefficients of @¢ 1in equation (42,08).

b. Determination of the approximating coefficients (, &, Ay
as defined by equation (2.03).

¢c. Calculation of P Mte 0 ¢ =~ 1~ ﬁ"l’l,““n ‘as
defined by (A2.05), 1 [ ?7 ’ ? , ] _

d. Calculation of 4‘ from equation (A2,03).

e. Calculation of the integrals involving ém
from equations (42,08) - (A2.12).

f. Calculation of /4‘-"' , A;; (x) as given in Table >(A1.01).

g. Solution of the Music equations (A1.24) to determine the

unknown quantitiesxo , x - —— Ih )

The first two of these are proportioml respectively to the total lift
and total moment about the mid-chord.

h. Resubstitution of the above quantities into equations

(1.25) and (1.27) to determine the 1ift and moment over any portion
of the chord. v

WADC TR 52-56 9




TABLE (1,01)
SUMMRY OF THE CORFFICIENTS Ajj | Ap (%)

Ail. ; +A‘l ? Wﬁ@.)’e

/7;0:‘7; ,x‘i(:)[r]-é“)" ](4‘)] ,4,,, = ) f’;a
Ao = /'“-/a:f\—(i@} Ay = n A/J?’O;J—?’
/Zw""%;é J ;iu =/ }‘2;%% ; Aap e gy o2
I?; =-3_-;‘£_§%’)). ',A;,=" ) An.“’ ) A”:_t;zﬁ‘, A’n-‘-";f’3
- /.
/.. @ =k 4 Py . = -t
O-m e E’(t)at ,A"' W/E ?‘&)Jt DR 4 ‘
[} -

T Gn— C— CA— S  T— ———  C— —— S—  G—— — ——— T — G SO  EE— . S R C—— ST E— w—

2 ('C)"-'[/(,ll'cur =)~ e c‘asz ;A?rié:‘)'[‘/ (A)(os L)—-J (A,Co: 1()]

4 "‘"--[m-w V3] - 2o [eos e Sim4]

;=0 , j>e

lu k;

o ) s

f
el a5 A o=/ ACETP

For the integrals involving Ihsee Appendix II,
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PART II
RESULTS OF NUMERICAL CALCUIATIONS

In the present calculations, the 1ift and moment coeffiecients have
been calculated for the case where ) =.7 and ¢w < .5 . Only the _
constant and linear terms have been retained in the kernel difference K
as defined by equation (1,04). The difference is plotted in figure
(A7.01) as & function of 2 = w(X—~E) » from which it can be
seen that for the imsginary part, a straight line approximation is ade-
quate over the interval -/ =2z =% /] corresponding to the range

0 Sw %.5] for the reduced frequency, For the real part,
this approximation is also considered satisfactory since the magnituvde of
this portion over the interval is small compared to the magnitude of the
actuval kernel, The line used is that one which gives for K the best
approximation in the “least squares" sense, i.e., for each (. the‘coef-
ficients &,and &, are so determined that

a :
(2.01) £ (w) = / [K- (&, + «, Z)]fiz.

is a minimum, where g < 2@ . This condition is satisfied provided

(2002) aqa - 2 a“‘

\

which leads for the determination of @, and @, to the relations

Q
d.,-:-'}—{a"//?(z)dz

(2.03) Q

These equations define X, and &, as continuous functions of &, The
integrations are carried by the procedure described in Appendix VII and
the results are listed in Table (2,01), &, amd & , are plotted in figures
(A7.02) and (A7.03) ae functions of Cu .

VADC ‘TR 52-56 | 11




TABIE 23

VALUES OF .Q,m &,

w 2K,
@ TMAGINARY IMAGINARY
05 o -.0025334 +000795 - .00044201
10 || -.000005 - 00507941 002125 -.0016714
«20 {| -.0000}1 -.0102774 4006601 ~ 40065784
30 | -.000161 -,0157034 +010565 - 0143774
L0 I -.000453 -.021624 .013190 -.0245234
50 -5001053 -.0276411 +013779 -+0363091

* WADG TR 5256



The next step is the evaluation of the coafficients_l,, ’ Aon A,.
and A, . These are tabulated in Takle (2.02) for ayw, 08,542, . 3.4,.5,

In the evaluation of the 7“ , the factor ,Wﬂ‘&-’y‘" times the
non-dimensional amplitude is removed in order to obtain 1ift and
moment coefficients comparable to those tabulated in reference 6.
Values of these quantities are listed in Table (2,03).

WADG TR 52-56 13




TABLE (2,02)

THE COEFFICIZNTS ‘i FOR VARIOUE VALUES OF -

a=.7

Ao

A.

.05 ‘ 1..1o .oos-.91 .086884+.1471 .80+.‘0439661 ‘
J10 || 1,14694+ .218514 | .016659-.0140811 | 1,159400+.210711 | .015933+.0812341
20 || 1.21915+.299214 | .041736~,0437991 | 1.254400+.273501 | +03900%.1449371
30 | 1,24357+,362714 «070906-.C7T94841 | 1.307580+.314461 | .057738+.2014261
A0 | 1.23995+.426641 | ,106130-.1192251 | 1.337930+,353741 079972+ ,2533584
.50 | 1.21895+.494211 | .149389-.1631194 | 1.355730¢.396131 | .104048+,3006271



TABLE (2.03)

VALUES OF 2 FGR VARIOUS & ; A%.?

- A ‘
WOTION TRANSLATION GF ENTIRE CH(RD ROTATION ABOUT QUARTER CHORD POINE.
W | B s he | On Boslrrby'se | Coafirod’roe
.05 | =3.3500-36.46491 |-4.2256-36.3604 || -733.628+30.522904] =731.933+48.15524
10 | -1.6408-16.76554 |-2.4460-16,63841 |f -170,274-,380251 | -169.339+7,82164
20 | -.1762-7.38921 -.8862-7.27581 || ~-38.0994+6.547901 | -37.765-2,84481
.30 | .45113-4.17104 -.1955-4.43314 J| -15.5592-6,086061 | =15.4726+3,781581
40 | .T7636-3.16621 .1751-3,12491 || -8.10142-5,200121 | -8,13715-3,562651
.50 | .96094-2.39641 3972-2,29181 (| -4 .98L2/4-4,433751 | -4.88636-3,18608%
Tk z S
MOT ION CONTROL SURFACE TRANSLATION CONTROL STRFACE ROTATION
@ ?Ol/ép 6%"% O [P B 2 L%, 78’ pe Un frrpé v 22
:05 | +2.85070-22,21350 }2,98699-22,14336 || =445.28940¢49.47210 ) <443.90690+52,22120
.10 | 21,80925-10.22309 |=1.90310-10,13279 § -102,89650+14,62350] ~101.99990+15.59110
20 | -,915826-4.52588L | -.95319-4.43095 H -22.99155+3.04556 | «22,50450+3.26170
.30 | -.529040-2,786501 | «.53255-2.69978 [ -9,51866+,82165 «9.20616+ ,85853
40 | -.325568-1.979462 | ~.30687-1.90305 N -5,.10957+.14755 =4 .88799+,12105
50 | -.206246=1.523000 | -.17162-1.45655 { -3.16595-,09751 «2,.97%8+ 150233

o
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The equations for the total 1ift and moment are

! /
2.00) \ A,/ /arce)dy « Aot /(O ¥ bt = 3&//,‘:;{

! (
/4;0 Jﬂ”{é)¢fz + ¢4;:v.217ﬂt)tclz = 25242%::;2

In order to obtain directly the moment about the quarter chord,
these equations may be re-written in the form

! !
05 { [Aoe --i'-A,,]/z(zm Ao TN E2dr = Boff—z

! (4
(o 24, 0 m./mz)[-;«z} de = B sz

The solution of the aﬁbvé\equations results in values for the
total 1lift and moment coefficients as listed in Tatle (2.04).

WADC TR 5256 16



TABLE (2,04)

COFFICIENTS OF TOTAL LIFT AND MOMENT

A®.7
mogr. -+ A - ¢
MOTION TRANSLATION OF ENTIRE GHORD ROTATION ABOUT QUARTER CHGRD FOINT
[] ’ ]
o |yodmon ] fstean | Lm0n ] et
, 726" r Yy P63 %, mvia, |1 T rpeva,

.05 «10,793-45.7691 1.196- . 2444 <927.4+170.321 =4 . 0381 - 38,1681

.0 -5.880-19.4771 1,057-.2794 -201,3¢39.641 2.1010-17,86491

.20 «2.361-7,9581 «918-.2991 «43.07+4 1478 -.9635-8,40041

.30 -1,102-4.7891 842-,3104 -17.91-.8074 5962544714

.40 -.520-3.4141 .788-,3264 -9.847-1.7874 -.L451-4 01261

.50 -.217-2.6721 T45- . 3464 -€.306-1.8934 -.2783-3.16971
o e-.s e-.s
MOTION /@ - ROTATIONGF CONTROL SURFACE 2- TRANSIATION OF CONTROL SURFACE

] ’ / [4
© ‘l" éq‘a‘) i PR fqtc)gn]h 1,9 _/zlr )it . ”4(:{,‘..];;
7mpbly e P mpéys, m't’rii 7040z,

.05 =556,226+141,6661 ~234.€88-11.€2831 §§ -7.55258-27.6804 .34425-11,737T74
| .10 -117.566+40.6061 ~59.689-4.90781 -4.4527+11,60001 .25098-5,97151

.20 «23,7339.42351 | =15.4232-1,961€1 f -2.1923-4.58861 .14680-3,08284

.30 9.3262+3.66041 -7.0532-1,11204 -1,313-2,€4701 .08426-2,10671

A0 -l ,8473+1,81684 -4.0644-.728/11 [} -.96113-1,79381 .04039-1,607481

.50 =2,9295+1,04321 ~2,6554-.513461 -.73411-1,323814 .00645-1,299474

WABC TR 5256 17




Equations (1.25) and (1.27) may now be employed to oalculate the
forces and moments on the control surface, after first evaluating the
quantities 40.(1) » Aol(x),A/o (‘), A,. (‘)/ B, (x and
2, ¢(x). In the example, the value x x @ = . y~ Was used? The basgio
mt(ueg :)sre listed in Tables (2.05) and (2,06) and the results in

2. 7 [ ]

# Here @ denotes the coordinate of the control surface leading edge in
the notation of Ref. 7.

WADC TR-52-56 18




TABLE (2.05)

THE COFFICIANTS A, (%) FOR VARIOUS VALUES F @

x=€~f, A=.7

o Aoe K)rrot® Ao, (») L Y7 B
.05 L5570+ ,338404 .03502-,0222641
.10 L75200+,212501 .09707-.,C77581
.20 .8738-, 27521 “2650-, 23001
.30 .5970-. 67601 .5211-, 22254
40 .1105-, 85571 .9039-.70201
»50 -..518-,79121 1.050-1,1508%

w Ao (x) 2 10* Awtx) v10”
.05 A4A20+,353301 .03575-.021104
.10 . 73640+ .262001 .10200-.070904
.20 .9035-.'1 5801 .2932-.19254
.30 .7205-,54894 «5944-,30954
o4O .3320-,80831 1,0567-.43584
50 -.1714-.91791 1.7051-,62064
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TABLE (2,06)
varoes or B ym variovs N;Xw@e. 8, An-?

1 =2
MWODE o
or -! R «
MOTION TRAKSLATION OF ENTIRE CHGRD ROTATION ABOUT QUARTER CHORD POINT
© [/, 5 15 2 a/)/ B, )
T . % Tt ek 3 s,
Ty X R W b IR ek SR
05 | =.246179-2.9296921 | ~.148238.2.9361891 || -59.01179-1.8626651 | -58,91258-3.8346384
® 10 - .091.170-1 .34&631 -y WSZI‘I 03‘35981 -13 .670495"2 . 3215“1‘ -13 .Am" 022“"
20 | -.042037-.5988154 .121436-,5675391 |} -3.123135-1.7597512{ -2.85663-2,157831
3V | .102201-,3865894 177219-.3579861 [ -1.356597-1.3492934, | -1.0564Z-1,592061
40 | .132741-,2987044 207142-.2523421 |l -.782840-1.0847474 | -..6409-1,252714
.50 | .148618-.2569681 .225075-.1931394 | -.532428-.90497214 | -.20158-1.02931
WDE :
o => L 4 A
MOTION TRANSIATION OF CONTROL SUKFACE ROTATION OF CONIROL SURFACE
o B2, B, () | | % P, x)
/4'1204"3.' ""J‘-"“.a‘ 7b ,J/’ﬂ‘/’ﬂ" b’l’;!o (=A%
05 | -.317587-6:037301 - .12367-6.044474 =120,9059+3,397501 | =120.94€9-.484574
10 {-.224897-2,9380941 - .03614-2.946421 -29,5092+,801104 | -29.4919-109175%
20 |-.141457-1.4159484 .040566-1.4219014 | -7.17947+,0050541 | -7.11113-.911991
.30 | -.104009=,9256521 074534~ 927404 -3.17216-,111184 | -3.08145-.714261
40 | -.084281.,6884761 .092758-.€85721 -1.80065-,126511 | -1.69822-,577921
50 | -.073168-.550421 .10368-.543251 -1.17588-,118991 | -1.06674-.482374
WBC TR 52-56 20



TABLE (2,07)
CONTROL SURFACE LIFT AND MOMENT CCEFFICIENTS

_.> C=.7
| A «
MOTION TRANSLATION (W ENTIRE CHORD ROTATION aBOUT QUART<R CHCGRD POINT
4 ;;aux / &-Axaa 71'. (€)de ﬁ’—eJL&)J&.
Y PMroncr B mmn |0 r,nfv‘t “C wpobitd,
05 -.29362-2,688891 -,05339-.509751 =5/,,.3.28- 660451 | -10.685-.269784
<10 «,04530-1,191421 «.00456-,2329€1 -12,02504-2.65942] -2.34416-,588854
<20 012209~ ,581441 .02770-,104161 -2.59921.2,098/81| -.49679-.442901
«30 .17699- 343621 .03820.068421 «1.05165-1,571274] -.1992,-.328121
40 .19888. ,271531 .04238-,053331 ~.55034=1,235241 =+10058-,259291
) .50 20661~ .232361 .04387- 045661 -.32912-1,007474 | =.05793-.20940%
W 2 | A
MOTICHN TRANSLATICON OF CONTROL SURFACE . ROTATION OF CONTROL SURFACE
w lp. AT | [t-ox, 0 WL OB @
VPt erz, | el A B 7Ph3r s, 3 RUI
.05 - .23'729-5.892821 -.039,0-,98793% -117.9€7+1,8,001 «19.7773+ .14 3754
.10 ~,0817,=2,346521 -.00915-.L74591 ~28,522/-.601034 4, 7529-,223731
.20 .021/5-1,38125% JO1CEH- 229221 -6.,92832-,801441 . ~1,14727-,20818%
.36 .053102-,913594 L016€7-,151554 -3,05€62-.£3€431 -.50.12-,1581/414
W40 .0644,04-.,684,951 .01772-,113541 ~1,71933-,504451 -,28241-,1235€1
.50 L0685 05-,548.01 .01942-,09C881 1 «1,10263-.2107214 -.1200/-,170074
WADC TR’ 52-56 21




For comparison, same values of the above coefficients as computed
in Reference 17 from Dietse's original data of Reference 3 are shown in
Table (2,08). The control surface coefficients are somewhat incomplete
and also soriespond to a value of € =,52 so that only a qualitative come-
parison can be made. However, it appears that reasonably good agreement
exists even for the higher values of @ where only a rough approximation
to the actual kernel was used.

In & subsequent repart, an extended range of control surface chords
is to be considered. It is also planned to check the present results for
the higher values of & by employing & cubic approximetion for /{. This
approximation should hold for values of & as high as 1,

MADC TR 52-56 2
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TABLE (2,08)
LIFT AND MOMENT COEFFICIERTS COMPUTED FROM DIETZE

A=.7
W Lh M’l L( ”‘
5 | ».21520 o 2,72800] | +.81104 « ,35860) | =£.48240 - 1,94480] | =.39900 - 3.407603
A | =.51688 o 3,451885 | +.84081 - .32444) -9.98938 - 1.837505 43375 - 4.22250§
.3 -1.10111 - ‘0813331 ’08"3” - .29900,1 "18.03222 - .81;078] -0555” - 50%7’
2 {=2,36250 - 7.96500§ 140.93050 - 0.28700§ | ~43.15500 ¢ 4.14500§ ; -.89950 - 8,50750§
.1 [=5,89200 <19.41000j |+1.05600 « .25200§ { -201.37000 + 39.69000] [ »1.99900 -17.92000§
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TABLE (2.08)
LIFT AND MOMENT CCRFFICIENTS COMPUTED FROM DIETZE

w ,” ‘p 72

[ 5 -2 0”‘” - 0‘25201 e 2 . &9” + 1 . lS“OJ + . 0‘516 - . 038805
oh - 419739 - 65562 e 4.78622 + 1,90688) + 04216 - 04562
.3 - 7.,15183 « 1,05489§ - 9.18150 + 3,706663 + 03695 . .059563
2 «15.47T739 - 1.83875§ - 2324622 + 9.42250] + 0,02653 «0.092253
01 -59 063739 - ‘063‘wj -n5 03‘372 * ‘oo zmj - - m‘n .ZWOOJ
W T“ 7;‘

.5 e L,04399 = ,20532) - 17621 .09144)

.‘ - .wOI - 02‘5“1 - .26972 .113501

03 - .17“ - .3W22j - 0‘7263 -]“891

.2 - o.mu - .‘0850,1 - 1 . %L“ o. 1&7501

. 1 - 2 . W939 - omw’ - L.380£1 .20100,1

MADC TR 52-56 2L



CONCLUSIONS

The method described in this report is suitable for the
computation of compressible, non-stationary, aerodynamic 1ift and
moment coefficients for values of the reduced frequency less than 1,

The subject method is better adapted to routine compptation
than are those previously known.

R EC OMMENDAT IONS

It is recommended that:

1. The results of this report be extended by the method described
therein to cover a larger range of valvee of the control surface
chord,

2. The accurecy of the linear approximation for the valve .5 of the
reduced frequency be checked using a cutic approximation for the
nvcelear differencew

3. Cealculations be made using the cubic aprroximstion for values of
the reduced frequency between .5 and 1,0.

WADG TR 5256 25/
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APFRNDIX I
EVALUATION OF CERTAIN INTEGRALS

A. [Froof of Egqvation (1.13)
The relation as stated in equation (1.13) is

(41.01) //,’f‘ 42'/ (Ddr - r/ﬁ'(l)&y_

Schwartz (Ref, 2) has estatlished the validity of the inter-
charge of the order of integration in the double integral sbove, and othnr
integrals of this type; thus

(41.02) //*Z dz Q)clt /zmd/ 1+2 Jf

/ﬁtz;_——z_ .becomes uron setting &= cas¢’ E=¢Cos®
(41.03) //*¢¢3¢ Scnpdd ~{/+C
/ Seng Cosgv—-cws.e =l °s6) cos?—-cao {/

The above integral is of the Cauchy "principal-value" ty}.e, and it is well

known that
" .
(A1.04) dd =0
[ cosf- cos&
Thus

(a1.05) //{jz dﬁﬂﬂ_ = ﬁ(t)éz

B. Proof of Eouation (1.14)

The relation to be proved is
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4
] (] | f |
(41.06) ;,L/A(x,-z)dl —;zl.ﬁt—’ﬂzm‘x ZCe)di~ /I Cr) dy
~¢ x
nt -]

Designating the right side by #(x), then since (Ref. ?, Equation €2)

{
(42.07) ~A(¥ l)'/ {//-nc -x - ,h.-x*}

_z(e)Jt /I+1 zn’c)dt
(41.08) ” /+x// ~2 z x/ z-t f-'i:'i -1 7

By equetions (1.11) and (A1,05)

| (
(A1.09) 24.3. = [z"(z)-ﬁ——:';_-;: ZZ'(E)dEJ

Further _/1((’ Z2) = 0 so that #(¢) = C, Therefore

(41.10) a(x)r m [/‘ﬂt)dl] /E'Ct)di

or

w7 acs dz/m_em - o'/ 27/ 7 (e

C. Evalusiion of the integrel / o
L

Set, z‘-'CG”f, Xe cos & Then

[ 4
( -gucesd
(41.12) //H-E e, ,,/(/~ca:,o)e d¢
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The function

| o
Co
(a1.13) [ e* ;ﬁos ngdy

is designated by ,/ “') Froperties of this function are discussed fur-
ther in Aprendix IV Thus

(Al.lL) )~ n“—! _ . .y . - y
/‘/lq € " dy =/ (Mcoix)-) (A cesx)

For x&2~# , since /; (,«, r)= W(i)”‘n é&) » this givee

(k2.48) /Ht oYy, < ,,[J,éa)“.N«)]

b. Evalution of the integral [p"94Y, 4 s L

Making the change of variables: » = ¢o 3{, Xz cos 8,
/
- oS
(a1.15) /Q u’cos"g dt -.-/Q wac fca( L E-L 4
o

Integrati rte, with
ntégrating by parte, gaces f

kxof, by-=€ seapdf
de ~dy, v= (e ")/,

(41.16) Y cuee 4 e
/e A s s = [ee Heoss_
or ) (4

whence
2-.;01 Coxef (f]

,“’\/‘k ~ChX -
b g/ 0oy dy =@ P oo ~ /] (o eoi®s)
p 4
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and for e =/

(A1.16) g / ettt = wle T, @)
<, /
E. e_jnte ’x/ﬂi' Cw

By the wal hans of veriabie,
/ ey = / e."' mt‘fd.f

(41.19) ==t [/- cos.rcﬂal 0]

=7{,—[,{ (40) = /s 64, 0)]

But equation (A4.07)

480~ a0 B[4 sins- [ 0]
Therefore,

wao ol aa [ e~ R
and for Z et ’
(a1.21) / f‘c-:z‘&- e - F J =

,/ t’ﬁ-_t.? e

(a1.22) / ESie5 E, dz / e n< f;sx“(co:ol.f |

r.
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Integrating by parts with

“é > 80‘1{4054’/1‘ £ 55211@1 dr= e_-‘:/“c“ﬁa‘mfdf
de = cos 2P dy = (%) L

gives

@ iacos ~chcos s 2 .
(A1.23) /ﬁ . é‘[n"fcoﬂ/‘{? =j[e “ Scnfcosd ‘/6.%"2‘22{&4]
A (4
/ ~Lucosb »
= .—-[e :zwcou—.é/‘/‘/’)]
Therefore

f -Cal cl: i) P
(£1.24) /&//-ﬁ € 41-;[‘/1 (oS x) ~xfixx €
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TABLE_(4],01) TABLE (A1,02)
', -
vawss i / VY 1+ 2 dy VALUES OF £ e‘“'“;'l dy
I~p
@ xze=.§ @ x=e=§
0 .1811722-04 0 0 -
.05 1810678~ ,00€04784 .05 000552+ ,0164404
.10 .1807542-,01208831 .10 .002206+,0328234
.30 JAT74241-,03602641 .30 .019721+,0966381
40 17£5291-,04775821 40 .034855+ ,1207281
T4BLE (A1,03) ABLE (41
‘
Yy ele
VALUES OF / @ = VALUES wﬁ ‘of £ = d
4 / gdy
@ Xs@ = § @ T=2lr. &
-o 03(”0925 0 .o L4 .2165%4-01
.05 «3069102-,01039864 .05 .2163671-,00758761
.10 «3063637-,02078.01 .10 «2159580-,01516421
o3 «3005572-.06193071 .30 .2115818-,0/,51€164
.Ag «2955115~,08208511 40 R077791-,05983931
5 «2890695-,10182261 50 .2029216-,07418731
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APPRIDIX II
/. l
sawoarton o / @~ *5Z, (r)dy [ [’ﬁ, (X)dy
x |

By definitionfequation (1.18)]

{
(h2.00) P (%) ’/G(X,Z)lla,lﬂdz , M=o, L, .

According té Kllsener (Ref. 1), this expression may be written as

m , mer |
(n2.02) P l~cos8) z[a. (_.3.‘,’.:'%_)4-.25 Qy Sén nsﬂ

with g »—C0s P ,where

UG d[r’ =B ]* R
(A2.03) | ‘ - - -
| Q;”? %'[Ph-l“abvlig“)* >0
and ll,.. [x)[z =« cos ,] bhas the form

N-M
(A2.01+) am(—¢.‘¢)‘ Em-‘-z %' ‘Pkm"’f'*f .

Expressions for the F's in terms of the coefficients (X may be found by
converting the powers of cos( into cosines of multiples of ¢ . For

n=3,

-

Bl Bogn - 200 B s, Bt

f S 8 ¢ ¥
' 3 |
P = -wr-3ade Pleu’e, | Bl=- 30
2
(42,05) o . 2_ g3
= 3w
Ro=w sy, Be 2D
—a
2 :-w’ﬂ-"
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Finally,

' ’
et ~ga sy - |

& ‘
= / e “’4){ [a, ]-[;z:' v a:} cosf +[ag™ Q"] cos2d
(42.06) -
. (_’n[qz'_a:,] cos % 4'} def

~ ol cosd "
Since ‘[ e Cos 7’9’ J‘( = /72 [7“)’). ) and since by

equation (A4.07)

cuces®
(42.07) oy C%8)- 1, (4,6) = 2y (ﬂ,ﬂ)- 2¢ @ M en®

it follows that

(a2,08) /g %'(z)dz— —-,L{ [/ [7“.;0)"‘/ (- ,0)]

- & S e ray 4y C42)

Rar

Cos® |
+ 25 2¢ © ie Z e Qp Sc.x.‘hl} 4, 3,-~(vt)

Ru?
For Z =~/ this gives

| r .
i2.0) /€5 )y -srf S [T FW]- 257 e w} |

R~
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If/t( »- O we obtain

{ _
™ . m) e ,
0 o (0 e 2 AP reZe 2585 - ,
| (1= ¢os0)
and for/a': 0, Xn=/ [&: T}

)
(42,11) / P (g)dy=-2r [a]"+a™]
21

Similarly,

( !
(A2.12) /fmc‘”—‘!ﬁ‘”[":”?],/:fm (“){’22‘—‘-"’[@:1‘2‘-(“20;'2}, ete.
A L)
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APPENDIX_III
o , s
EVAWATION OF 7, (&) = / @7 Z; (9ds dd '-3,,(‘0-’ /N
b 4

For practical purposes the above integrals must be evaluated for
four types of moticns, these are:

1. Trenslation of the entire chord.

2, Rotetion of the entire chord about the forward quarterchord point,
3. Trunslation of the control surface.

4. Rotation of the control surface.

It has been shown by Kussner (Ref. 1) that in each of thé first
two ceses, the pressure distribution _z;a-_) isvexpressible in the form

. 2, vl
(A3.01).22',(£)=/’Vzb/'e {Q,’.}E.f +Q;Jl~t&+432\ﬁ:_?‘}

where 4 is the non-dimensionel amrlitude of the motion and theq"are func-
tions only of the reduced frequency, as given in Table A,3,01 , Thus the
avaluation of/e. "/"!‘z‘o (€)dy 1is in these cases reduced to the de-

termination of the integrals

t . ' ( {
~MT e 'Y -Gl
(A3.02)/€ 1/;‘;—5 dt,/a”ﬂ—;‘dt,ﬁ A&/}T{fa{c
z ¥ .

These have already been shown in Appendix I té be respectively

o
_~om - | ; -1 e -
‘/Q /-,-’;25- de =/ (4 cos x)—./' (M, cos"' )

(A303) e’“tﬁ?gTdf-__[/(,a cos’z) —C ’“z.//—- J
/e z/lf/dz [./zc‘ﬂ,mx) ¢ /“f'\{]
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In the last two cases the incompressible pressure distribution conelste of
terms of the above type and additional terms of the form

P
Rﬁ (t-e)Alse) ) p=o,/ 2,

(A3.04)
where @ 1s the coordinate of the control surface leading edge. The in-
tegral
/
—cal, P,
w.05) Ta(xed= /[ e 7 (r-e) A(re)de

x

is discussed in Appendix V, Thus the general expressiomg forfo become as

follows:
W —B, (X)= 7;’;‘; /!e-mt I&,g-.ﬂe—)[/;[-/‘, cos'x}~/ (7“,60:":)]
(4.306) + ;“- g&”-gi'i’[ J (-, 005 k) ~€ OSTTRE ]
+5 ["»e)[/(,u, cos’z)- € z./'—l]
7? Ae T (4 xe >+7’T".’z I (4, x,e)-r:./;; l;(n, xse)}
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=B, C1)- f__..—tfﬁ—‘Ae { QLT T ] oqy [T ]
+ Q’[-é-@]é .3J-I,“,‘$C)* #1;'@-;&},?&1;(4 -/,e)}

(43. 07)

where the®; and R; are listed in Table A (3.01) for the four types of
motion to be considered.

It 1e noted that for airfoils with a single control surface it is
necessary to consider only the case where x = e,

The integrals B(¢)’/I(t)dt ) 'B‘(e)/Z‘ (‘)8‘( are

alrecdy known, being reSpectively the incompressible 1ift over the portion
of the airfoil extending from x= e to =x= 1, and the total incompressible
moment about the midechord. In the notation of Reference 6, these are:

W B @=mpi'Sphy) Ree) | B,60) = mpr's’ () b
@) Be)=npory’a, Bee) , B,ed=mpr'sie, Ly

) 3, =qpr' V(%) B.(e) | B, C1y= wpvE (%)L,
W B,(e) =mpi'bp, B (&), B,60= mov'%ls, L,

(a3.08)

W By (-0 =y v () [P 4+44]
@) B, () =7pv' A [ Me-+L)

0 3, (4): zr/:r‘b'(‘};)[ Mo—% La]
W BLogpv's)s, [Ms -~ 41, ]
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The relations (A3.08) are vseful as checks on the computation of ?p (x)
since .
B (0= lcm B, (M x)

For the evaluetion of 33 the following integrals are needed:

/l"‘l ttJt, ) /]’/— &di) //,_tg L J‘_
/A(c e)ed /A(f e)(t-0)¢de /4(: e)(t-e) e

These are found to be respectively:

/ !
/',rl:z—" glde = o
A‘“)?Jt = Z Jres (r#ze®)
A((,C)&‘C)['ygz - T [iF (et2e)
/A(t e)(e-e)stds= S fiew (9+ze % ye)

Thus

(43.09)
1.10) B=mpblyaf k@ +5 @z +4RoSime (142 et)
~5-F e (e +a@d+ L Rl (9t 2% e ]
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AIPERIX IV

i Funorion 48]

By definition

(A4.01) / 4 8) = / e ‘Zosﬁfdf

a, Special Values -
The function is seen to possess the following limiting

values:

(A4.02) )
L) =7w0)" Tntt)

(A4.03) ‘,z

Ay (%)= T &[T )i E; 4]

where F is the Lommel-WNeber function of order ar;

»n
) Scn (28 r
4 lo0)= S22 50
(44.04) -

J(oe): &

b. Differential Relations -

By differentiation of equation (44.01)
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ap ﬂli{] /Q"“ ‘f o5 wyf Coscp if

zf— / e A ”"2}:&: {a«)f& cos -[u«)#] o -
A _

U VAL R L

In particular, far 2= O,

(84.06) 5/% [l t50)= </ (a0)

¢. Recurrense Formulae -
Integration & Byuation (A4.0l) by parts gives

»” A.Mv)z e .r:a(‘n) tom / e ,.\.. (ng) sl ,{4)
(a4.07,
’ -
- e oM CO“ Sin (no ).‘ / ef,‘ 605743,{&'0‘,-(5’(““*}“‘
(]

or

cucos®

(a4.08) A, (4,6)= Z_‘_",/,, (»«,0)*.4 (u, 0)- 2L e scr(re)
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d. The Differential Equation Satisfied By /k le o)

Differentiation of (A4.05), together with suscessive ap-
plications of equations (A4.05), together with sucecessive applications
of equations (A4.05) and (44.08), shows that ,[A)s‘/" [Al, 0) smatise
fies the differential equations

(A4.09) J " J. “ [ -X ]g =€ “‘7__46»(&0)}«04&0(1’0)};

In particular, /Ja #) 1is a solution of

(4.100 & & +—-—‘-__‘fi¢ -~ -
J4*

Cos®
v“ T

e. Expansion of ‘/’é‘;o) and jht} as Power
Series in coa &
It has already been shown that ,/‘[/1,0] is a solution

of the eauvation

®
(as.11) /g -}'*/; e et e
= o:ot’g: c--———'--'—_J
r

It follows that /' [A#) oan be written in the form

WADO TR 152-56 | : “




ws12) o (#8): AT (W)+B A, le)sc m&z. N "’
'hemAk@),mmaﬁa@ ths equation
dhr, by i, « a™
(5«4013) ﬂzgﬂ" + @ '?}‘/ﬁ- ,k /‘
and 3% is oaglly shown thab a solutlion of this equation is
ﬂ. 4

(a)  Ayle)= z[f + =
R )= ﬁWﬁ (ﬁo})““ (ﬁu)‘(tos)‘

The 2 gatisfies the recurrence relation
(44.15) Agei t)=a®— 724, («)

with the following initisl values
A, () =~ T £, ()
4 V4 (‘&) - - o Z;“)

where E;ia the Weber function of order gzero.

(A4.16)

As a check on the computation of the A's, the following relations
are useful:

A, )~ —-4}?) + —4‘;‘:-;@ = Jy )~ costpe)
(A2.17) , py
A0 -8 AL o o)
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Further, since /. (0,8)= &  amd Ax (0)=C , 1t tollows
that J=o0 and A4 in Kquation (A4.12). Thus, finally

Cos ‘ﬂ

. e g R
(A4.18) ‘45"/ &)= l{[‘)‘*iﬂnﬁh%w A‘ W —Z7

Separating real and imagixiary parts,

' 34

6““"0

Ao maZ( e IR

(44..19)

- alk.:
Cos
L o= .cmenz_'.o(-m La)..(..;)-;l

Sinco“/{,a, )e-cgf: Joé‘gﬁ)

(A4.20)

R
a4
/ﬂ('}-f&ﬂ’zé’) 32,‘{"‘) :’a)la
tRY
Cos
/ (us)= & J @) *Jmﬂz(° zm: ) (2!
where

A A .
(84.21) By (@) = 2 Ak W)= ﬂﬂ A4 (ar3) +(a +0) (124 3) (R +5) !

‘ﬂ RiL TAY ]

For n!, A {44, J) may be found from the relation

eo:’

W) (4025 (o) ()= 25 €7 intes)
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However, if 4 </ , this formula mey be subject to considersble error
unless the lower order functions are carried to many more pleces than is
required in the finai results. 1n éucb cases it may be prefersble to
employ the following type of expansions obtained'by applying Equation
(&4.05). Thus for ,/; (#, 8)

We2) f (.0) *a[J,w J, M]—/ (o, 0)~1: moz I G S5t

with

R+2 ' oo ne3
(44.24) fh(‘)'q,ﬁh("] [ Rer 2 (me?(mn"r zm.x‘(m:ﬁ(mn" ]

Similarly,

We.25) / (m8)~i6f37, (a) -1, ]~3;/m,:)-maz m’ﬁg‘w ""*‘ -

nwro

with

(44.26) _d Ripi) #X_(Ae2) R Jct Al
“ 2 ('“) [G!(‘] [ ‘h*) (1!*')(1!*3)4 TR O Req (105 "'J
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TAELE (A4.01)
VALUES OF /, (4, cos™x)

A<.? s Al
)/a /_As

@ n=0, X =.§ e/, x=.5
.0 1.0471976 - o0i 8660258, - 0i

.05 1.0463437 -.04159111 8652759  -.03554331
.16 1.0437836 -.08311041 8630294  -.07102214
.20 1.0335687 -,16564581 8540640  -,1415290%
.30 1,0166208 ~,24703561 8391967  -,21100921
40 9930688 - ,32671781 " 8185397  -,27895961
.50 9630315 -.40414291 ! 7922477 -.34488821
w =2, X=.§ Ned, T=.5
.0 4330127 - ©Ci c - oi
.05 4325233 -.02079391 -.0001923 -,00519314
.10 A310562  -,04154254 «.0008026 ~,01336541%
.20 4252043 -,08272081 -.0031865 ~.02055811
.30 4155065 -.12317431 -.0071306 «,03036304
Wic A020469  «,16254761 -.01257¢5  -,03960254
.50 3849425 20049771 -.0194387 -,04813901
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APPERNDIX V
THE FuNcTION Ln (H¥.€)

a, Recurrence Relationships -

By definition

\

(a5.01) Zn(4x,e) /e, {-C-)A(t ?)41’
whence

W) 4"y [ e - Alr )%

or

e . _LME
(25.03) d_—%;[e In]= - G_Iy“ Lrnet

b, Value of Z, (4,x,e)
Setting x=cos @ € =Cos€ Z“"' Cos P » in (A5.01), we have,

for »=0,

¢l cosé

_ ufrose—Cos )
o ,/Q A () sengdp

(4

(45.04) C

Since (Ref. 1),

d’A(ﬁé - Jin € .

Cosf = CosE
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integration of (A5.03) by parts gives

(45.05) e:,«tose /g [ 9“(60:6 cos &) /] Sin€ f_g ~sultos@-cose) |
e '-/“ Coscf~ coze df
Introducing the notation
-./a(corqo—eo;s)
(45.06) F(m,6,€) / Co.c.(-éo:" I¢
gives
N c,qcosc (¢os€~cos®)
(45.07) e o[/‘ Y,e)=A(, c)[ s" —-/]+sme /:7(/6',9,6)

The function AYA, & €) is discussed further in Section f. of this Appendix.
For the present it is sufficient to note that

0, - )
(45.08) _a_g-c ,&(c 5¢ ”24) = &eﬂ(ojf/é &)

Thus since F(O, 8,e)= 0,

(45.09) Y/ Y YIEN: e /(-t 8)dt

c.. Value of _Z/ALE)
By (45.03),

i cosé SUCOSE

. d [ 0P e I +i@ Z
(45.10) &;[‘/ue_ _7_"] Y e S
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But also from (A5.07) and (45.08)

Cl(cos6—~co58)

(A5.11) ﬁ[::/‘ewcesfg]ﬂgj\_[e é) 4 (cos&~cCos P)+ilsiné e_ /[/@0) .

Thus

. Ga(cose-cos8)

cucosé
“ 5~ (CosE ~coso)A(aE) e

) :,,aau
(a5.12) «€ l;- e

ClloSE
~sin€ € s ‘///1,9)

sux - :
(15.13) ‘al (4 xe) =T, («,xe)+(x~e)/L (eos™%, cos@)C  —yi1-€* 4 G4 cos'e)

d. Value of E(/‘(,x'e)
Differentiation of (A5.12) gives

CUcoss e 6‘ uc :t-cov)
wony T[IS ¢u[“” L ilcose-cesoftnore™ ™
A5.14)

and, applying (A5.03)

. _4ucosE c,aco

CiL Cos& : . 8,
(5.15) (€& I, tou[-ce Z,]=~ie™ ﬂz*,u::awe*f‘“’.ww

g lose~coss) SUCHSE -
~i(erse- CoSO)A(’ &)& ~Lscu 6 CosE e LCu8)
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Whence

054 Cos & ch(cosc-coss)
(45.26) /4 € _Z:l ‘/l L, + (cosg~cos8) Apee
LU C Lulosé .
+Sénébcosé @.‘ “é‘/ [/(,i) ~Sene C “ / (-« &)

or

(4517 sal;, (4,xe Y= 2T, (4,2,e)+(x-e) A (cos's, cose) e

-te../:-e*,{(;l(/ cos'x) — /1~e‘;/l (—/f,cos"z).
e. Special Values -

For x = =1, ﬁ:r)A[o) £)= J, and the following expressions result:

cul, {/(,‘f,e) 6, ,/*Q /1:75‘(,77' cos e>
45.18) \ La Z, (-1, )= T, (4, e) 7 /i~ ()
LU, (U1, Y= 2T, (4-1,¢) +Te /= J, (w)+imiimer J] («)

and for /7 = € » 8inmce }_"’2 (cosa ——cosé)Afﬂ, 6) =0

La T, (#ee)= e “fi=e /ﬂ//(, ces’e,cos'e)
(45.19) LA I( éa)e)e): ‘Z; édlele) - l‘*@",( /7‘(, cos'e)
iu Ty (#,e,e)=2T, (u,e,e)+evi-e/(-4,coi'e)

Y AP ‘_. =/
V7 e,’///x,ose)
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The following limiting values may also be deduced:

Lim T fu3,e)={i"a" &i'x — (% &) A Lo5'%, coile)
Low T ) =t Al oot

Lim T funes = [ -l coite)
(b coixT e 1]

f. Properties of the function /[~ («, #,¢)
It has already been noted (Equation A5.09) that

. ﬂu"fto:& .
Flased= ¢/ e (4 )d2
( |

or

' ) ’a-ctco:e' -
(45.21) Flwged=~i ) @ / {t,0)dt

¢

Now from Equation (A3.09)

[ ~bcosd
;{Z dbs = Lscnyg @ ¢
;édzf"‘ t gt 2‘/0 L
Multiplying both sides by @~ < _<°° and integrating,
~ileosé, , - M _cleesE
(45.22) e dLoz df + e‘ Lo gt
o dE* ) At
e A |
~clcosk - (d(tosP- Cos €)
o) Y pdt = ismn /" dt
o o
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The left side after several integrations by parts may be reduced to:

> A- .tm’ N lt’ ‘a ‘““" r PR
°¢a:f e’ £ 4t + sa‘o‘/\e ‘ “,/‘ Edt ip € (/ fﬂil,‘)
/ { _ |

and the right side becomes

ga(co;o- co:t)‘ /
Scnd [—
CosB— CLoséE ]

But

~Cleosc -

” -
(a5.23) & Flase)= .ﬂn/ e Tdt

Thus
cose flu, € )+ sine o[l 6,6) =
(A5.24) ‘

-e,a cms[ »,a[as&- CosE) iy
+ -
/ *60‘6/] ﬁ]{&[ CosB — cos & ]

caleosP ~cosc)
J%' [ sine Fa, 5’;6)} = .rzza[ ¢ “’/]

CosS &~ Cosé
(A5.25)

or

-— Zo & » ;
—cu@ Luces [,["!«’)1‘8055‘4&”"”}

Integrating,
er ’ £ slfCos® ~Cos ¢P)

Séxn € /n[-,a/a,e') zscza/e— =/ dy
(45.26) A Cosd — Cos P

iy [4[_ 4, € ) /(,4(, 5) + 4 .[-/t,'s)/. Z«)a)]

54

WADG TR 52-56




scxd Flaa o)~ sanél (48 6)
: (‘5‘”)

| -e«[lﬂﬂ[&d +/6ae) / Mﬂ]

It A= , this gives

(45.28)  -stne /" G, 6) = "}’[ lé")j b6yt ol dL (e ")]

(45.29)  sine [T, €)= ﬁb’“[l/“’//‘b" “‘J@)Ll"‘]
and it A= €

(45.30)  sing[ Fl46,6)—~F (4, 6‘)I=$‘[455‘M56‘)*[}L"”’ ‘M a“}

Since m4,¢ ) and F {’/‘) &)¢ ) are complex conjugates, the above
" relation gives only the imaginary part of A7, €6), Equations (45.27)
and (A5.30), while of little value for direct computation, are useful as
numerical checks on results obtained from other methods.

€. Expansion of /'7(/;.0,6) as a power series in &.
By definition,
| . ’ -4 (cosg—-cose)
/-7;4/ 8 5) = / /- & . .
(]

df

CosP—casé
Expanding the numerator,

”n o
8 & (-s4) . )1( ﬂ
(a5.31) F/ﬂ,&,e)=/ {/", gL‘iT (“f"o-‘ Sé_'} dy
' 4

Cosef — Cos €

_ R p? A
L F s / (m(—:m‘)ﬂdf.
e #® J

Then with the notation _
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4
(a5.32) Zt["‘g) = /(co:/- Cos s)ﬂa’.p yR Zo
05.33)  ATlu, p,6)= - Z f‘:“lt L, (5¢6)

‘The Z.& may be computed successively from the following recurrence re-
lationship:

A %(5€)= ;—‘3—5' fofﬂ—to;&]*-'#‘( 3';'-’) sen’s U, (6/6)
~ ( =N cose Uy 50, rZ2

starting with the initial values

(A5.34)

(A5.35) Uofﬂ)é) = 4 ) ?[’; 6‘)2 f@gﬂ—ﬂcoss
In particular,

- ' -/

ws.26)  Ule,e) = (Zh)sonke O, (66) — (B8 ) cose T (5, €)
with [] (6,6) = € ) q-ﬂ:) €)= scné—~¢ccos€

”/& o0
Since K(%,%-) = a/ €o$ﬂ¢ ey and since ; Cos kf
converges if 0<P<T/, ) so also does Z‘C; (‘71,%), or,
Lim T (%,%) = © Mlso, 1t € <%, U (56) <k (%,
Thus the series for /:7%4 €, 6’) converges more rapidly if € < 72

since for &£ > W/,
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”

r
Upt,6) = Gylmm) = z / cos™ 2 dp

e o
and although the series 2 "7 2+ (€ ,€)

the convergence is poorer if e < & <77

still converges,
the following relation is useful:

o In this case

(45.30)  FLux. 6,76 ) = %[@(a)/(},a,s)ﬁ j{*)/ﬁ,«,e}]

t Fu e 6)
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, TABLE (A5,01) - VALUSS OF Zf F/""; EC) ; € .8

(7.] xX=e x= -~/

0 1,0471976 -0 3.1415927 +01

05 1.0471453 -, 00822471 3.1406858 +,03771721

.10 1.04€9886 -.01644781 3.1379702 +,07535834

.20 1.0463617 -.03288271 3.1271345 +,15010861

.30 1.0453176 -.04929191 3.1091812 +.,22365061

40 1.0438574 - . 06566261 3.0842665 +.29539611
TABLE (A5.02) - ValUis O Z, (4, xe);C=.5

w ¥=e Kz =f

0 .906899 - o1 2.7206994 -.01

.05 9064218 - . 02890091 2.719914Q -.03267031

. 10 0904983’ - 05776911 2 071756% -4 %531&1

.20 .8992647 «.11527591 2.708158 -,13139874

40 8765085 -.22846291 2,6707474 -. 25899641
TABLE (A5.03) - VaLU=S oF Ty &4, %,@) ; €=-§

w xz= £ x=~l

0 .14,8275 - 01 -.6801747 - 01

.05 .1481707 -.00544561 -.6800759 -.01633254

.10 1478647 -.01088284 -.6797823 «.03264941

.20 1466385 -.02169954 -.6786053 -.06513691

.30 .1446013 -.03239161 -.6766493 -.16009921

40 .1417670 -.04289651 -.6739193 -.12902191

.50 .1381515 -.05315284 « 6704206 -.16009921
TatLE (A5.04) -ValLdS OF Zp (4, 7w )) €25

w xz=e X2~/

) .0392250 - 01 6801747 . 01

.05 .0391520 - .00146801 6799926 +,01221714

.10 .0390673 -.00307554 6791402 +,02448631

.20 .C387291 -,00615881 6761256 +,04886424

.30 .0381164 -.00918211 6710323 +,07305564

W40 .0372615 «.01214941 .6639488 +.09694481

.50 .0361732 -.01503541 654972 *,12042491
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AFPSNDIX VI
A DERIVATION GF THE INVERSION FCRMULA FOR THE EQUATION 7‘(")' 'z (e )t dt
/
Ao s,,pﬁgial._“!teg;alg -

In the following demonstration it is necessary tc recall the fol-
lowing:

L4 =0

A Coes ‘{— Cos @

(46,01)

where the symbol / denotes the Cauchy principal valve, i.e.

_ o e
(46.02) dd < 4
. Cosf ~coso ‘ ‘9’ Cosf - coxl ”‘C os P~ CosP

From this result it is easy to obtain by induction the following: N
Yy
(26.034) Co:(tf)d[ = 2;?‘ no)
Cosy-ctose Sind
»

Six(ng)sind 4" 7w Cos (w®)
(46.03B) j Coes)—Cos ¥

B. Solution of the equation
The. equation to be solved is

'
= _L I ie)de
(46.04) [ 7 oy
Making the substitution zCos 0 & = cCos f in(A6.04)
(46.05) feeso)= _L Iéo:() Scxd o
C°‘<f Cos ®
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Now assume & solution of {A6.05) of the form
o
(46.06) Zr(cos) senep = Z &, cos(np).

Then with the aid of equation (A6,034),

) Ly
(A6.07) SCnOflcos®) = "Z.ah scn(xs)

Sen ®
Woltiplying both eides by [ Gore—cor 7

end integrsting with resgpect tc 5,

4
(46,08) Fleosé) sin’s olo 2’ "'a .ﬂ'n (n8) six Ocl/'®
f COSE- cosy Coss—cosq
Or, from (A6.03B)

A CLos & - co.rf

=7r[1‘[¢'o:¢() Sthq‘-,d,)

Returning tc the originel varisbles x and z,

!
(46.1C) f ("i*_’;“ de _ 77 [ )i~ - a,]
-f

or, interchenging x end !

(46.11)  fI-x* Z(X) = 8p- = FoSizde
o x-¢
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It is noted that (A6.11) still contains the undetermined constant a,, the
presence of which may be attributed to equation (46.01) which renders
this quantity arbitrary. 7Thus a, is amalogous to a constant of integra-
tion in a differential equation and additional conditiors must be imposed
to determine it.

In thin airfoil theory where equation (A6.04) relates the downwash £ (x)
to the pressure distribution Z'(r), the Kutta condition requires that a
finite pressure exist at the trailing edge, x = 1. It is clear from in-
spection of (A6.11) that the only value of ao for which this is possible
is that one given by

(16.12) 2= L) 1 (f}Jz"f* dx

~4

Replacing 8, in equation (46.11) by the above value and re-arranging gives

‘

ww  zonfFF[ IO .
“
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APPENDIX VII

THE POSSTO KERWEL ANP TTS AFPROXINATE REERSSENTATION AS A ROLYNOMIAL

1. K\‘.‘lssner (Ref. 4) gives for the kernel of the Fossio integral
equation the following expression:
Z
. it
. ~s X
LRC

» - A€ cu X de
(47.01) | H(Az) YT /. e /4, [,1/_4/]_&-_.

where /Z‘”(ﬂ)': Q[(’)‘ l-./”(v,lnd ¢ and/“are the Bessel and Neumann
functions of order unity in corventional notation,

The integral is only ;roperly convergert when <O, in which case
~-dAC 2 eﬁ@“” ) da
#Wiafy, [2u) 3

In the case whereg>qit is necessary to form the Ceuchy principal valve under
the integral sign in equation (1.01) whence it is found that

(a7.02)  K(x,-z) =

A

L0
Y 4 ‘e %)
(47.03) Az) = (A ““A [ra] dn

-t

By making uce of the following identities which are easikly proved by dif-
ferentiation:

a4 2, 7w ) Sk, ) @)
/c 4 0 = A= [ 4, Audu-£E [ﬂ, (A)-c A4, (m]
oy . ) T )] )
/e 4 (Au)%‘i': A;'\:! e “,l/‘p (A4)du+ !:;_—,-p/a (,\u.)vli/)#, (l“‘)]

the follcwing expanded forms of the Fossio kernsl are obtzined:
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KOs ;& 4 ity 2]t / e’ /M(M)da}

AN

(a7.05)

LAW 73 (x\ >)
K(r- /—“ { =i 2, (wy=~idf cw)Jﬂ(,-q )e ,91 (Au)du

z/~:\‘

where z;aand w= A—- Since

riu -
(47.c6) /e H, (Aw)du = ',_ATA.,, LAVE-R2 J;A ,
the last integral in each expression may be written as
o %A’; "
(a7.07) rw'f_/\r Log —/lx’:_l— e~ ‘“b’ (aa.)ala,

the latter form being more svitatle for numerical comjutation., For d= 0
it may be shown that

-~ z fw
2w Kle,2)s~—L 2 ;& Y CtLopz + ¢ _/'_L:_G’r__d ]
(A7.08) ’ % [ 4 7& o “ “

LR . & "y
ZTK(92)= L +ie [C"“’fl *‘%-/L-L_“k “ 4,,_.)‘

where C = ,577216 , known as Euler's constant, is defined as

oo 3

é L,
(a7.09)  Lim [/*—5_'4-—4----- +;§-—1¢,7z]

2. The singularities of f{(A 2)

It ie well known that ae x~»eo /Vo {X) becomes infinite as log x|
and /V (x) a8 V4. Thus in the vieinity of x = C,
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4 .
ﬁz (x) =~-‘;.—‘~Lo,{z1+ non-eingular terme
(a7.10)

(2 .
ﬁf )(x) = -’-'7,.—9[}/,]1» non-singular terms ,

Further, it is clear from the expanded form that these are the
only singular terms, Affixing the proper coefficients to these terms
as determined by equation (A7.05) gives

(a7.11)  K(A,2)= 577-‘,5—_:——__5;47}1/- ‘l:,?f [’/z}-f i, (»2)

where K,(;\z) has no singularities. In Ref, 16 Schwartz has tabulated
the values of M, a,2) for A2 @ ~.9 1in intervals of .l and for

22 ~20-)?) fe X = 2a(/~-»*) in intervals of (.C2). Later in Ref. 17
the range of /=/ for A=.Z was extended to 5.1; for A = .8 and .9 to 2.00.

The singularities of K (o,Z)are, from (47.11) given by N
(47.12) K(ez) = 4'{'_‘—-17/21‘*#[1/2]-&}(.(0,:)

It follows that the difference
— ®
wa3) D= KO, 000 e (A= KD 7= KB

is also non-singular., The real and imaginary parts of ;\: are plotted in
figure (A7.01) as functions of 3 for A =.7.

2. Representation of R— ( ),1.) as a polynomial,

Since K has singular derivatives atz= 0, it is not possible to
represent it by a Taylor series expansion about this point. Further, even
if euch an expansion were possitle, the retention of a finite number of
terms would give a good approximstion only for small values of Z, and more
terms would be needed, the larger the Z range beceme, The range over which
the value of X extends is evidently -t to 2w ,since Z=e(¥-)and X and ¥ -
each have the renge »1 tc 1. It, therefore, appears that a more systematic scheme
would be to obtain for i a representation such that over any arbitrerily
chosen intervel, the difference between the actual value and the approxi-
mate value were made as small as possible. One means of accomplishing thie
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ig to represent } over (say) the interval[-a to a]by Legenédre polynomials:

wr.1) K@= A,B(3)eA, 2 (30)« ~~ -~~~ +A B, (3)

The first few Legendre polynomials are:

R (x)=/ B () =L (32 /)

(47.15)
F (== ABx)=Lt(52%32) .

The general expression for 7;'(‘) may be found in numerovs scurces (for
example, Refs. 14 and 15). In Ref. 15 it is shown that the coefficients
A»n my be determined from

Qa
(47.16) An= %//? @) B (%)d~
Qa

It can also be shown that with this representatio njthe mean square error,
viz,

(47.17) 5(;)7'/‘2/?.‘ é?;(?’a)}zdz,

*is made a minimum, It is further noted that since asX& equation (A7.16)
- defines the An as contimious functions of the reduced frequency, & .

3. Evaluation of -AR |

Since 7;: (Va) is & polynomial of degree.?z in 2 , the evalu-
ation of the A,l ie reduced to the evalueztion of integrals of the form

Q .
//([0,2)21’42
2
(a7.18) a '
~a

For /3 = O tre value of the integral is defined as the Cauchy prircipal
value, 1. e, ‘
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(47.19) /;[A,z)dz */‘{zﬁ[lﬂ)"-—iﬁ?[l/z]} dz
A La

since dz - O

-Q

The evaluation of the required integrals is easy for the case when As o,
since by differentiation of equation (47.08),

(47.20) [((a 2= i lo,2)+ 3k [4 ]
and 8o = K,(oﬂ)*/ Lagiz/

a a ‘ @
/ K@,z ,_:/v {K(o,z)qfr-[{/;]}dz-.s? ,,/4.,;/;/ 2z
(a7.21) Xe a a |
e  pa | |
<</ & [y den £ [ (et

(47.22) dn
47,2 /A’ (02 dze £ [a'W(w («a)/((o,-c)]—&h/'/(foz)z “dn

“ar A [# 72~ et
For A®2, the expressions become more cumbersome

It is found after some
calculation that .

//b(’h,z sz = [l 3,0 e (3]
*a

(a7.23) _43'
T e feosFin 1A »]““‘z RAT5R
l—,vt *) _
=2/ A W cos Raa’a}
o ’ .
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For n O the integrals may be found by a recurrence relationship sime
1lar to (A7.22). The last integral oonstitutes the only unknown
functions, but it can be shown by a process similar to that used in
Appendix V, Section f that

Ae
2y ire

-2%) ey 13 2a]/ —
Ao da ,4:3—:/52:;&4 g, c0ih)

AT.2% °

®, -,
~iH [ [ A plFeris

In view of the complexity of the expressions involved in the integration
of X£(a,z) , the following alternative method was employed to obtain
the results in the example of Part II of the reportt In Reference 3,
Dietze gives the following approximate expression for

b4
w25 (0RO, 2[Ry By LatH [+ T Ry 24 601,2)

where $(3,z) is a small regular remainder, the absolute value of which is
never greater than (.2) in the range -2 €2 £ 2, For -1 2 2< 1, the
absolute value of § is less than (.007). A, A,5 oand 1,4. are explicit
functions of A which are listed by Dietze of Page 26 of the reference
above and are reproduced in Table (7.01). The nmerical values of
ﬁ,‘&.o-‘ﬁ&, are also given here for h = 03, olt’ 05’ 06’ seTe

Since § is small, the error introduced by employing an approximate
quadrature formula such as Simpson's rule will be negligible, while the
remainder of the terms involve only simple functions which can at once be
integrated. Using this method the value of

a
/}?{&,z)zﬁz,, (=21)
Za

was calculated for M = .7, and & = .1, .2, 3, by o5, o6y o7, 8, o9,
1.0. From these results the values of W&, and «w’¥, as 1isted in Table
( 2.01) were obtained. | |
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TABLE (A
(Reproduced from Reference 3)

AK(A2)= KQ,z)-K(o,2)

= AK(A,2)+A K (A,2)

AK (A,Z)"- 40/1 + R, -("&‘Lofle * t(*"-ﬁﬂ’ /.gz)
Al (A2~ £ #pp 2™

ﬂo = :{':{ (=V1=A= )
o =~ (= 1) Sha YA 4 (DY otes ()]
Ra= %r[/f——'x‘ I)
ﬂl? = /,{-—/ +107( % A ,_)’f[%,ﬂ% [/ 7:;“ M [/“ 7’}2!)17/%(111)3}
— g (11 O™

v =4 [/*(3#/{[—3‘)% ; Aepr=.5772 2 =Ruler's Constant
A 0,3 0,4 0,5 0,6 0,7
102k 122 8,0195 18,0872 0,3274 1,1211 L,7319
+102k 23 -0,0032 -0,0237 -0,1197 =0,4493 -2,8593
+10%% 12, c, 0067 c,no21 -0,0047 -0,1054 -1,291
+10%k 25 -0,0075 €,0152 0,0894 C,3478 3,2183
+1C%% 26 ~0,0013 0,000, C,0033 0,0161 0,2452
+10%% ' 27 6,0039 -9,0055 -0,0409 -0,1.4€8 -1,5321
+103k'28 -0-0003 -0,0007 -0,C016 -C,0CL3 -0,0274
+10%k'29 -G, 006, 0,%011 0,0070 0,0238 0,2539
+105k 'ho 0,0419 0,169¢ 0,5484 1,6217 £,9165
+102k"73 -G, 0026 0,0137 0,0745 0,4830 2,2234
+10%k " 1o, -0,020€ -C,1266 -0,4€9L -1,593/ -6,5205
+1o2k"25 0,0059 -0,0189 -0,0536 -0,3839 - 0,2119
+10%" 2¢ 0,0078 0,0553 C,2091 0,7325 3,5056
+10%" 27 -0,0034, 0,0119 0,0254 0,2153 0,364
+10°%" 28 -0,0011 -0,0086 -C,0326 -C,113, ~0,4719
+10%k* g 0,0C06 -0,0021 -0,0038 -0,03€3 0,0677
¢ - ']
ﬁan ﬂln* & k
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FENDIX VI
AUXILIARY TABLES

TABLE (A8.01)
THE FUNCTION 7 () (REF, 1)

w 7 (@)
.05 .818018-,2612891
.10 663848+ ,3446041
.20 455160~ ,3772481
<30 .329942-,3586381
040 0249952- . 3299681
50 .195892-,3014191

TABLE (A8.02)
e«e
e=.§5,A=.?

w A e ".“ €
.05 .0480392 .9997115+ ,02401734
.10 .0960784 9988460+ ,0480211
«20 +1921569 .9953880+,0959314
30 : .2882353 9896330+ ,1436191
«40 «3843137 9815950+ ,1909771
.50 4803922 .9712910+,2378931
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TABIE (A8,03)

Jp (44)
A=.,7
(%) ﬁ =20 ﬁ a/ ﬁ =2
.05 .9994231 0240127 .000288
.10 .9976935 .0479838 -001153
.20 .5907902 .0956357 . 004602
.30 9793377 21426262 .010313
40 963151 .1886311 .018241
.50 9431326 .2333334 .028282
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